Abstract

In the field of soft dielectric elastomers, the notion ‘electrostriction’ indicates the dependency of the permittivity on strain. The present paper is aimed at investigating the effects of electrostriction onto the stability behaviour of homogeneous electrically activated dielectric elastomer actuators. In particular, three objectives are pursued and achieved: (i) the description of the phenomenon within the general nonlinear theory of electroelasticity; (ii) the application of the recently proposed theory of bifurcation for electroelastic bodies in order to determine its role on the onset of electromechanical and diffuse-mode instabilities in prestressed or prestretched dielectric layers; (iii) the analysis of band-localization instability in homogeneous dielectric elastomers. Results for a typical soft acrylic elastomer show that electrostriction is responsible for an enhancement towards diffuse-mode instability, while it represents a crucial property – necessarily to be taken into account – in order to provide a solution to the problem of electromechanical band-localization, that can be interpreted as a possible reason of electric breakdown. A comparison between the buckling stresses of a mechanical compressed slab and the electrically activated counterpart concludes the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.