Abstract

Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π-electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green’s function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.