Abstract
PurposeMicrostates represent the global and topographical distribution of electrical brain activity from scalp-recorded EEG. This study aims to explore EEG microstates of patients with focal epilepsy prior to medication, and employ extracted microstate metrics for predicting treatment outcomes with Oxcarbazepine monotherapy. MethodsThis study involved 25 newly-diagnosed focal epilepsy patients (13 females), aged 12 to 68, with various etiologies. Patients were categorized into Non-Seizure-Free (NSF) and Seizure-Free (SF) groups according to their first follow-up outcomes. From pre-medication EEGs, four representative microstates were identified by using clustering. The temporal parameters and transition probabilities of microstates were extracted and analyzed to discern group differences. With generating sample method, Support Vector Machine (SVM), Logistic Regression (LR), and Naïve Bayes (NB) classifiers were employed for predicting treatment outcomes. ResultsIn the NSF group, Microstate 1 (MS1) exhibited a significantly higher duration (mean±std. = 0.092±0.008 vs. 0.085±0.008, p = 0.047), occurrence (mean±std. = 2.587±0.334 vs. 2.260±0.278, p = 0.014), and coverage (mean±std. = 0.240±0.046 vs. 0.194±0.040, p = 0.014) compared to the SF group. Additionally, the transition probabilities from Microstate 2 (MS2) and Microstate 3 (MS3) to MS1 were increased. In MS2, the NSF group displayed a stronger correlation (mean±std. = 0.618±0.025 vs. 0.571±0.034, p < 0.001) and a higher global explained variance (mean±std. = 0.083±0.035 vs. 0.055±0.023, p = 0.027) than the SF group. Conversely, Microstate 4 (MS4) in the SF group demonstrated significantly greater coverage (mean±std. = 0.388±0.074 vs. 0.334±0.052, p = 0.046) and more frequent transitions from MS2 to MS4, indicating a distinct pattern. Temporal parameters contribute major predictive role in predicting treatment outcomes of Oxcarbazepine, with area under curves (AUCs) of 0.95, 0.70, and 0.86, achieved by LR, NB and SVM, respectively. ConclusionThis study underscores the potential of EEG microstates as predictive biomarkers for Oxcarbazepine treatment responses in newly-diagnosed focal epilepsy patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.