Abstract

Calf thymus DNA was oxidized by various Fenton reagent systems [Fe(II)/H(2)O(2)] with or without ethylenediamine tetraacetic acid (EDTA) under different reaction conditions. Calf DNA was also oxidized by a modified Fenton reagent (Fe(III)/H(2)O(2)/ascorbic acid) with EDTA. Malonaldehyde (MA) formed from DNA was derivatized into 1-methyl hydrazine, which was subsequently analyzed by gas chromatography with a nitrogen-phosphorus detector. MA formation increased linearly with an increase of Fe(II) concentration. MA formation reached a plateau at nearly 2 mmol/L of Fe(II) with 0.5 mmol/L of H(2)O(2). Addition of EDTA increased MA formation from DNA nearly 5 times. When DNA was oxidized with various amount of ethanol, MA formation decreased with an increase of ethanol concentration, either with or without EDTA. The rate of inhibition was greater without EDTA than with EDTA. When DNA was oxidized by a modified Fenton reagent, MA formation linearly increased with the increase of DNA. Ascorbic acid alone produced some MA upon oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call