Abstract

AbstractAimDue to its complex biogeographical and ecological history, the seasonally dry forests (SDF) of Mesoamerica are considered a biodiversity hotspot. SDF are currently distributed in relatively large and continuous, but isolated areas, in which there are both high total and endemic species numbers. Among birds, few species are shared across SDF patches; other species are endemic to one of these; and for two species currently endemic to one patch, fossils have been recovered in a different one, suggesting a former widespread distribution in so species, implying that current distributional patterns are probably recent.LocationMesoamerican seasonally dry forests.MethodsWe assessed the role of niche divergence/conservatism in the evolution of bird distributional patterns. Using an ecological niche modelling approach, we estimated palaeodistributions for two species currently endemic to the SDF of Yucatan Peninsula (YP), two to the Mesoamerican Pacific Slope (MPS) with fossil record in the YP and two more showing an allopatric pattern. For comparison, we simulated virtual species (VS) matching each pattern, assuming they represent the expected distribution of species in each SDF patch. To test hypothesis of niche conservatism, we assessed the niche equivalence/similarity between the patches represented by the VS, and in each bird species and its VS distributional counterpart.ResultsOur results showed three patterns: (i) no past geographical connectiveness among suitable areas; (ii) niche conservatism, but not equivalence, despite low niche overlap and geographical distance; and (iii) potential niche divergence.Main ConclusionsFor birds currently endemic to the MPS, our results suggest that the absence from the YP may be attributed to the loss of their environmental niche. Widespread species showed either niche conservatism or divergence. YP endemics showed niche divergence. Our results underline the role of niche divergence/conservatism in the evolution of distributional patterns in Mesoamerican SDF avifauna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call