Abstract

Guilds subdivide bat assemblages into basic structural units of species with similar patterns of habitat use and foraging modes, but do not explain mechanisms of niche differentiation. Bats have evolved four different echolocation strategies allowing the access to four different trophic niche spaces differing in niche dimensions. Bats foraging in open and edge spaces use the “aerial hawking or trawling strategy” and detect and localize prey by evaluating pulse–echo trains in which the prey echo is unmasked. The pulse–echo pairs deliver mainly positional information on the prey and only little information on its nature. Signals are highly variable and are adapted for detection and localization in open space and (or) edge space. In narrow space, bats identify prey by solving a pattern recognition task. Bats using the “flutter detecting strategy” evaluate glint pattern in prey echoes; bats using the “active gleaning strategy” evaluate the spectral–temporal pattern of the prey–clutter echo complex; and bats using the “passive gleaning strategy” evaluate the pattern of prey-generated cues to find food and use echolocation only for spatial orientation. The less variable signals of narrow space bats are adapted for pattern recognition. The diverse and species-rich tropical bat assemblage at Barro Colorado Island, Panama, is here used as an exemplar for assigning bats to guilds, and we discuss the role of echolocation and other adaptations for niche differentiation within guilds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call