Abstract

Using the Coulomb and proximity potential model (CPPM) we have investigated the cluster decays of the isotopes 212-240Pa, 219-245Np, 228-246Pu, 230-249Am and 232-252Cm leading to doubly magic 208Pb and its neighboring nuclei, which are not experimentally detected but which may be detectable in the future. It is found that most of the decays are favourable for experimental measurements (i.e., $T_{1/2}<10^{30}$ s) and this observation will serve as a guide to future experiments. Our study reveals the role of doubly magic 208Pb daughter nuclei and near doubly magic nuclei in the cluster decay process. In order to make a comparison with CPPM we also calculated the logarithmic half-lives using the Universal formula for the cluster decay (UNIV) by Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., and they are found to be in good agreement. The Geiger-Nuttall plots of $log_{10}(T_{1/2})$ versus $Q^{-1/2}$ for various clusters from different isotopes of heavy parent nuclei have been studied and are found to be linear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.