Abstract
For most animals, eating entails the risk of being poisoned. Learning how to identify foods with toxins is an important mechanism that reduces the risk of poisoning. While conditioned food aversions have been studied in vertebrates for over 50 years, the neural circuits underlying this form of learning have been difficult to elucidate because of their complexity. Insects, such as fruit flies and honeybees, are important models for the study of the neural mechanisms of learning and memory, but conditioned food aversions have not yet been reported from either species. My collaborators and I recently established that the honeybee has the ability to learn to avoid odours associated with toxins in food using two independent neural pathways. In these experiments, we found that honeybees can learn to associate scents with toxins that they can pre-ingestively detect using their proboscis. This form of learning is primarily mediated by the neurotransmitter, dopamine. We also found a second mechanism: bees can learn to avoid odours associated with the malaise caused by ingesting toxins. This form of learning is mediated by serotonin. Our data are the first to show that two different mechanisms account for conditioned food aversions in insects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.