Abstract

Free-roaming dogs and rabies transmission are integrally linked across many low-income countries, and large unmanaged dog populations can be daunting to rabies control program planners. Dog population management (DPM) is a multifaceted concept that aims to improve the health and well-being of free-roaming dogs, reduce problems they may cause, and may also aim to reduce dog population size. In theory, DPM can facilitate more effective rabies control. Community engagement focused on promoting responsible dog ownership and better veterinary care could improve the health of individual animals and dog vaccination coverage, thus reducing rabies transmission. Humane DPM tools, such as sterilization, could theoretically reduce dog population turnover and size, allowing rabies vaccination coverage to be maintained more easily. However, it is important to understand local dog populations and community attitudes toward them in order to determine whether and how DPM might contribute to rabies control and which DPM tools would be most successful. In practice, there is very limited evidence of DPM tools achieving reductions in the size or turnover of dog populations in canine rabies-endemic areas. Different DPM tools are frequently used together and combined with rabies vaccinations, but full impact assessments of DPM programs are not usually available, and therefore, evaluation of tools is difficult. Surgical sterilization is the most frequently documented tool and has successfully reduced dog population size and turnover in a few low-income settings. However, DPM programs are mostly conducted in urban settings and are usually not government funded, raising concerns about their applicability in rural settings and sustainability over time. Technical demands, costs, and the time necessary to achieve population-level impacts are major barriers. Given their potential value, we urgently need more evidence of the effectiveness of DPM tools in the context of canine rabies control. Cheaper, less labor-intensive tools for dog sterilization will be extremely valuable in realizing the potential benefits of reduced population turnover and size. No one DPM tool will fit all situations, but if DPM objectives are achieved dog populations may be stabilized or even reduced, facilitating higher dog vaccination coverages that will benefit rabies elimination efforts.

Highlights

  • Domestic dogs (Canis lupus familiaris) are responsible for over 99% of human deaths due to rabies [1]

  • Assuming that a rabies vaccination program is in place or being planned, this review aims to assess how different Dog population management (DPM) tools might benefit rabies control programs and how to choose the most appropriate tools

  • Dog bites dropped by 33%, public perceptions of free-roaming dogs improved 28% reduction in population size Around 50% reduction in dog bites, associated with reduction in breeding females Dog population declines of 51%*, 40%, 39%*, 28%*, 3% (*significant)

Read more

Summary

Introduction

Domestic dogs (Canis lupus familiaris) are responsible for over 99% of human deaths due to rabies [1]. The key objective of a successful canine rabies elimination program is to maintain a high enough level of rabies vaccination coverage to interrupt rabies transmission within a defined dog population. This in turn reduces the incidence of rabies among human populations [1]. Where the size of the free-roaming dog population is large and turnover is high, regularly vaccinating a large enough proportion of the population to achieve rabies elimination is a huge challenge. The stabilization of dog populations, and, in some cases, the humane reduction of the population over time to a manageable size, would be valuable adjuncts to long-term canine rabies control strategies

Objectives
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.