Abstract

Cancer development and progression is dictated by a series of alterations in genes such as oncogenes, tumor suppressor genes, DNA repair genes, and others. DNA methylation is an epigenetic modification that is profoundly altered in most cancers. Recently, hypermethylation of CpG-rich areas located in the promoter of genes (CpG islands) has been shown to be commonly implicated in silencing tumor suppressor genes in cancer. By cloning and characterizing a large number of such CpG islands hypermethylated in colon cancer, we found that two processes explain most of these events. Age-related CpG island methylation in a subset of cells in normal tissues, followed by intensification of methylation in cancer cells explains the majority of hypermethylation events in colon cancer and may provide a mechanistic link between aging and cancer formation. Most of the other CpG islands methylated in colon cancer can be explained by a newly described phenotype, the CpG island methylator phenotype (CIMP) which results in multiple methylation events in a subset of cancers. CIMP accounts for the majority of sporadic colon cancers characterized by microsatellite instability, as well as most tumors with k-ras mutations. Understanding further the factors that lead to, and modulate, aberrant methylation in cancer may provide novel avenues for prevention and treatment of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call