Abstract

The solid phase polymerase chain reaction (PCR) on a gel-based microarray system was studied under various durations of individual stages of the PCR cycle and spatial restriction of the reaction volume. Combining the experimental study with numerical modeling, we demonstrated that the diffusion of the PCR product in and out of a microarray element during the annealing and melting stages, respectively, is the main factor responsible for distinctive features of the studied type of PCR. The restriction of reaction volume leads to faster PCR signal growth. Particularly, the capillary array, whereby gel-based microarray elements are located on a glass bar inserted into capillary chamber, was found to be a suitable format for the development of the platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.