Abstract

Global shortages of personal protective equipment (PPE) have been at the forefront of public attention throughout the recent crisis. Initial lack of information regarding the route of transmission of the virus fuelled panic buying of face masks and gloves, as well as shortages in healthcare facilities. Home-made cloth masks have become commonplace, and makers have seized upon opportunities to increase capacity by producing PPE with 3D printing. Mask designs typically incorporate flexible filament face pieces with an integrated filter, but devices to improve the fit of simple surgical face masks have also been produced, and are not burdened with such strict testing requirements. Manufacture of face shields has been a triumph for the 3D printing community, with the availability of highly optimised and tested designs which are printable on most domestic machines, comfortable to use, and keep production time to a minimum. Across the globe, these devices have been manufactured locally and delivered to nearby hospitals by volunteers. Thus, the COVID-19 pandemic has spurred development in the field of distributed manufacturing, the long-awaited holy grail of home 3D printing. In the following chapter, we provide an overview of currently available 3D printed PPE, reviewing the designs for durability, ease of use, and clinical effectiveness, as well as exploring future directions for PPE manufacture by 3D printing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.