Abstract

Identifying adaptive loci is important to understand the evolutionary potential of species undergoing range expansion. However, in expanding populations, spatial demographic processes such as allele surfing can create spatial patterns of neutral genetic variation that appear similar to those generated through adaptive processes. As a result, the false discovery rate of adaptive loci may be inflated in landscape genomic analyses. Here, we take a simulation modelling approach to investigate how range expansion affects our ability to correctly distinguish between neutral and adaptive genetic variation, using the mountain pine beetle outbreak system as a motivating example. We simulated the demographic and population genetic dynamics of populations undergoing range expansion using an individual-based genetic model CDMetaPOP. We investigated how the false discovery rate of adaptive loci is affected by (i) dispersal capacity, (ii) timing of sampling, and (iii) the strength of selection on an adaptive reference locus. We found that a combination of weak dispersal, weak selection, and early sampling presents the greatest risk of misidentifying loci under selection. Expanding populations present unique challenges to the reliable identification of adaptive loci. We demonstrate that there is a need for further methodological development to account for directional demographic processes in landscape genomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.