Abstract
We present a grid of nonequilibrium ionization models for the X-ray spectra from supernova remnants undergoing efficient diffusive shock acceleration. The calculation follows the hydrodynamics of the blast wave as well as the time-dependent ionization of the plasma behind the shock. The ionization state is passed to a plasma emissivity code to compute the thermal X-ray emission, which is combined with the emission from nonthermal synchrotron emission to produce a self-consistent model for the thermal and nonthermal emission from cosmic-ray dominated shocks. We show how plasma diagnostics such as the G'-ratio of He-like ions, defined as the ratio of the sum of the intercombination, forbidden, and satellite lines to the resonance line, can vary with acceleration efficiency, and discuss how the thermal X-ray emission, when the time-dependent ionization is not calculated self-consistently with the hydrodynamics, can differ from the thermal X-ray emission from models which do account for the hydrodynamics. Finally, we compare the thermal X-ray emission from models which show moderate acceleration (∼35%) to the thermal X-ray emission from test-particle models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.