Abstract

Dietary fatty acids have been shown to be associated with the development of cognition. However, research on the role of fatty acid intake in dietary patterns and fatty acid patterns (FAPs) in the development of cognitive function is limited. The aim of this study was to explore the correlation between dietary patterns and FAPs and to provide available evidence for preventing mild cognitive impairment (MCI) through these patterns. The 973 participants aged between 65 and 85 were recruited from 2020 to 2021 for this multicenter research in Beijing. Neuropsychological tests were used for cognitive evaluation, and data of dietary intake in the past 12 months were collected with semi-quantitative food frequency questionnaire. The erythrocyte membrane fatty acid profile was tested by chromatography and mass spectrometry lipid profiling. Factor analysis was used to derive the main dietary patterns and FAPs. Pearson's correlation or Spearman's correlation was used to explore the association between dietary patterns and FAPs. Binary logistic regression was applied to examine the relationship between patterns and cognitive function. Six dietary patterns and six FAPs were identified, explaining 53.4 and 80.9% of the total variance separately. After adjusting all potential confounders, T3 of the pattern 1 and FAP2 were the independent protect factors for MCI, respectively (OR 0.601, 95% CI [0.395, 0.914]; OR 0.108, 95% CI [0.019, 0.623]). Rich of SM (26:0), SM (24:1), and SM (26:1) is the characteristic of FAP2. A positive correlation was found between component scores of dietary pattern1 and FAP2 (r = 0.441, p = 0.001). People who adhered to a reasonable intake of animal flesh consumed more various long-chain fatty acids as well. The erythrocyte membrane metabolites, SM (26:0), SM (24:1), and SM (26:1), might function as early biomarkers for predicting or monitoring of cognitive aging in the elderly. The dietary pattern with recommended animal flesh consumption was significantly associated with FAP characterized by very long-chain SMs. This dietary pattern affected FAP, which might achieve the ultimate goal of neuroprotection through the very long-chain SMs. A rational intake of dietary fatty acids might be an effective way on preventing MCI in the elderly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call