Abstract

Using a zonally averaged, one-hemispheric numerical model of the thermohaline circulation, the dependence of the overturning strength on the surface equator-to-pole density difference is investigated. It is found that the qualitative behavior of the thermohaline circulation depends crucially on the nature of the small-scale vertical mixing in the interior of the ocean. Two different representations of this process are considered: constant vertical diffusivity and the case where the rate of mixing energy supply is taken to be a fixed quantity, implying that the vertical diffusivity decreases with increasing stability of the water column. When the stability-dependent diffusivity parameterization is applied, a weaker density difference is associated with a stronger circulation, contrary to the results for a fixed diffusivity. A counterintuitive consequence of the stability-dependent mixing is that the poleward atmospheric freshwater flux, which acts to reduce the thermally imposed density contrast, strengthens the thermally dominated circulation and its attendant poleward heat transport. However, for a critical value of the freshwater forcing, the thermally dominated branch of steady states becomes unstable, and is succeeded by strongly time-dependent states that oscillate between phases of forward and partly reversed circulation. When a constant vertical diffusivity is employed, on the other hand, the thermally dominated circulation is replaced by a steady salinity-dominated state with reversed flow. Thus in this model, the features of the vertical mixing are essential for the steady-state response to freshwater forcing as well as for the character of flow that is attained when the thermally dominated circulation becomes unstable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call