Abstract

More or less universally, bis(3‐triethoxysilyl propyl) tetrasulfide (TESPT) has been used as a coupling agent during dispersion of silica filler in a virgin nonpolar rubber compound. It is for the first time that TESPT has been used as a devulcanizing agent and as‐grown devulcanized rubber facilitates the silica dispersion in nonpolar rubber compound without any coupling agent. Dual functionalities of TESPT have been modeled and validated in this work. Various factors like the role of sol‐gel content, inherent viscosity of sol rubber, crosslink density, and degree of devulcanization were investigated as a function of devulcanization time and amount of TESPT to optimize devulcanization time and TESPT amount. To study the silica reinforcement, revulcanization of devulcanized SBR was carried out with silica filler and the curing characteristics of the material were evaluated. From the mechanical properties and thermogravimetry analysis the optimum time for devulcanization is determined. Further, scanning electron microscopy (SEM) studies were undertaken to check the coherency and homogeneity of the material. POLYM. ENG. SCI., 58:74–85, 2018. © 2017 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call