Abstract

Alterations in global levels and regional patterns of deoxyribonucleic acid methylation are among the earliest and most common events known to occur in human cancer. The mutational and epigenetic effects of this covalent deoxyribonucleic acid modification to the development of bladder cancer are well recognized. The contribution of aberrant methylation to mutational hot spots located within genes, transcriptional silencing, and chromosomal instability is reviewed in the context of its relevance to bladder carcinogenesis. Understanding how such processes evolve during the progression of bladder cancer is essential for using these molecular changes in the clinical setting. The recent development of sensitive and specific techniques for quantifying methylation changes in urine specimens and bodily fluids underscores the potential use of this molecular marker for early detection and surveillance of bladder cancer. Further refinement of these molecular biological techniques holds much promise for the use of methylation markers for bladder cancer diagnosis, risk stratification, and disease prognostication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call