Abstract
Crack initiation and propagation in polycrystalline metals and alloys can be characterized by the crack driving force and the resistance to fracture. Interfaces such as grain, sub-grain and interphase boundaries are microstructural features that can resist crack propagation. For iron–silicon polycrystalline steels, brittle fracture occurs predominately by transgranular cleavage but intergranular fracture is enhanced by embrittling heat-treatments. In this paper, we consider the role of deformation twin boundaries on the brittle crack propagation and fracture resistance of poly and single crystals of Fe–3 wt.% Si steel. Three-point bend, impact and miniaturized disc tests have been undertaken at temperatures in the range of 77–273 K. The fractographic features have been characterized with attention being given to (i) the role of the {1 1 2} deformation twins on the propagation of the {0 0 1} cleavage cracks and (ii) the process-zone of the propagating cleavage cracks. The results are discussed with reference to three-dimensional model predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.