Abstract
Researchers are claiming that the feasibility of space elevator cable is now realistic, thanks to carbon nanotube technology, proposing its realization within a decade. However, the current view of basing the design of the megacable on the theoretical strength of a single carbon nanotube is naïve, as has recently been emphasized. In this paper the role of thermodynamically unavoidable atomistic defects with different size and shape is quantified on brittle fracture, fatigue and elasticity, for nanotubes and nanotube bundles. Nonasymptotic regimes, elastic plasticity, rough cracks, finite domains and size effects are also discussed. The results are compared with atomistic simulations and nanotensile tests of carbon nanotubes. Key simple formulas for the design of a flaw-tolerant space elevator megacable are reported, suggesting that it would need a taper ratio (for uniform stress) of about two orders of magnitude larger than currently proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.