Abstract

The energy of the acoustic pulse generated by laser-surface interactions and measured by probe beam deflection was used to investigate laser surface damage thresholds of fluoride crystals with optical quality. It was found that damage thresholds decrease with increasing density of surface states. The defect density also controls the energy absorption mechanism: for surfaces with few defects, like polished MgF2 and CaF2, avalanche breakdown occurs at above 1 GW/cm2, whereas for materials with lower damage thresholds, such as LiF, BaF2, and roughened or incubated surfaces of CaF2, multiphoton absorption across the band gap is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.