Abstract

Single cells and cell culture are very good model for estimation of primary effects of gravitational changes. It is suggested that cell cytoskeleton plays a key role in mechanisms of adaptation to mechanical influences including gravitational ones. Our results demonstrated that cultured cells of human vascular endothelium are highly sensitive to hypogravity (clinorotation) and respond by significant decrease of cell proliferative activity. Simultaneously it was noted that the formation of confluent monolayer appeared early in cultures exposed to simulated microgravity due to accelerated cells spreading. Long-term hypogravity (several hours or days) leads to significant changes of cell cytoskeleton revealed as microfilament thinning and their redistribution within cell. Such changes were observed only in monolayer cells and not in cell suspensions. Gravitational forces as known to be modificators of cell adhesive ability and determine their mobility. Hypogravity environment stimulated endothelial cell migration in culture: 24–48 hrs pre-exposition to hypogravity significantly increased endothelial cell migration resulting in 2–3-fold acceleration of mechanically injured monolayer repair. Obtained results suggest that the effects of hypogravity on cultured human endothelial cells are, possibly, associated with protein kinase C and/or adenylate cyclase activity and are accompanied by noticeable functional cell changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call