Abstract

Epithelial-to-mesenchymal transition (EMT) contributes to the poor prognosis of patients with cancer by promoting distant metastasis and anti-cancer drug resistance. Several distinct metabolic alterations have been identified as key EMT phenotypes. In the present study, we further characterize the role of transforming growth factor-β (TGF-β)-induced EMT in non-small-cell lung cancer. Our study revealed that TGF-β plays a role in EMT functions by upregulation of cytidine 5'-triphosphate synthetase 1 (CTPS), a vital enzyme for CTP biosynthesis in the pyrimidine metabolic pathway. Both knockdown and enzymatic inhibition of CTPS reduced TGF-β-induced changes in EMT marker expression, chemoresistance and migration in vitro. Moreover, CTPS knockdown counteracted the TGF-β-mediated downregulation of UDP-glucuronate, glutarate, creatine, taurine and nicotinamide. These findings indicate that CTPS plays a multifaceted role in EMT metabolism, which is crucial for the malignant transformation of cancer through EMT, and underline its potential as a promising therapeutic target for preventing drug resistance and metastasis in non-small-cell lung cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.