Abstract
Cirrhosis is a serious condition characterized by the replacement of healthy liver tissue with scar tissue, which can progress to liver failure if left untreated. Hepatocellular carcinoma (HCC) is a concerning complication of cirrhosis. It can be challenge to identify individuals with cirrhosis who are at high risk of developing HCC, particularly in the absence of known risk factors. In this study, statistical and bioinformatics methods were utilized to construct a protein-protein interaction network and identify disease-related hub genes. We analyzed two hub genes, CXCL8 and CCNB1, and developed a mathematical model to predict the likelihood of developing HCC in individuals with cirrhosis. We also investigated immune cell infiltration, functional analysis under ontology terms, pathway analysis, distinct clusters of cells, and protein-drug interactions. The results indicated that CXCL8 and CCNB1 were associated with the development of cirrhosis-induced HCC. A prognostic model based on these two genes was able to predict the occurrence and survival time of HCC. In addition, the candidate drugs were also discovered based on our model. The findings offer the potential for earlier detection of cirrhosis-induced HCC and provide a new instrument for clinical diagnosis, prognostication, and the development of immunological medications. This study also identified distinct clusters of cells in HCC patients using UMAP plot analysis and analyzed the expression of CXCL8 and CCNB1 within these cells, indicating potential therapeutic opportunities for targeted drug therapies to benefit HCC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.