Abstract

AbstractWe continue our study of the role of curvature in modifying frontal stability. In Part I, we obtained an instability criterion valid for curved fronts and vortices in gradient wind balance (GWB): Φ′ = L′q′ < 0, where L′ and q′ are the nondimensional absolute angular momentum and Ertel potential vorticity (PV), respectively. In Part II, we investigate this criterion in a parameter space representative of low-Richardson-number fronts and vortices in GWB. An interesting outcome is that, for Richardson numbers near 1, anticyclonic flows increase in q′, while cyclonic flows decrease in q′, tending to stabilize anticyclonic and destabilize cyclonic flow. Although stability is marginal or weak for anticyclonic flow (owing to multiplication by L′), the destabilization of cyclonic flow is pronounced, and may help to explain an observed asymmetry in the distribution of small-scale, coherent vortices in the ocean interior. We are referring to midlatitude submesoscale and polar mesoscale vortices that are generated by friction and/or buoyancy forcing within boundary layers but that are often documented outside these layers. A comparison is made between several documented vortices and predicted stability maps, providing support for the proposed mechanism. A simple expression, which is a root of the stability discriminant Φ′, explains the observed asymmetry in the distribution of vorticity. In conclusion, the generalized criterion is consistent with theory, observations, and recent modeling studies and demonstrates that curvature in low-stratified environments can destabilize cyclonic and stabilize anticyclonic fronts and vortices to symmetric instability. The results may have implications for Earth system models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call