Abstract

AbstractThe influence of microstructure on the crack resistance (R-curve) behavior of a commercial debased alumina containing large amounts of glassy phase (28 vol %) has been studied using the Indentation-Strength test. The effect of two microstructural variables, viz. grain size and the nature of the intergranular second phase (glassy or crystalline) has been evaluated. Crystallization of the intergranular glass was carried out in order to generate residual stresses at the grain boundaries, which have been shown to enhance R-curve behavior in ceramic materials. Enhancement of the R-curve behavior was observed with the increase in grain size. However, no effect of the nature of the intergranular second phase on the R-curve behavior, in small and large grain materials, was observed. The results from characterization of these materials using various analytical techniques is presented, together with possible explanations for the observed effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.