Abstract
AbstractPolycrystalline ice near an ice divide typically shows a crystal fabric (crystal preferred orientation) with c axes clustered vertically. We explore the effect of this fabric on the large-scale flow pattern near an ice divide. We incorporate an analytical formulation for anisotropy into a non-linear flow law within a finite-element ice-sheet flow model. With four different depth profiles of crystal fabric, we find that the effect of fabric is significant only when a profile has a minimum cone angle of less than ~25º. For a steady-state divide, the shape and size of the isochrone arch can depend as much on the crystal fabric as it does on the non-linearity of ice flow. A vertically oriented fabric tends to increase the size of the isochrone arch, never to reduce it. Also, non-random fabric has little effect on the ice-divide-flow pattern when ice is modeled as a linear (Newtonian) fluid. Finally, when we use a crystal-fabric profile that closely approximates the measured profile for Siple Dome, West Antarctica, the model predicts concentrated bed-parallel shearing 300 m above the bed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.