Abstract
AbstractDuchenne's muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle degeneration, leading to loss of ambulation, respiratory failure, and premature death. It affects approximately 1 in 3,500 live male births and is caused by mutations in the dystrophin gene, which impairs muscle fiber stability. Current treatments are limited to managing symptoms and slowing disease progression, with no curative therapies available. The advent of CRISPR/Cas9 gene-editing technology has introduced a promising approach for directly correcting the genetic mutations responsible for DMD. This review explores the potential of CRISPR/Cas9 as a transformative therapy for DMD, highlighting its successes in preclinical models, the challenges associated with its delivery, and the obstacles to its clinical application. While preclinical studies demonstrate the efficacy of CRISPR/Cas9 in restoring dystrophin expression and improving muscle function, significant hurdles remain, including optimizing delivery methods and ensuring long-term safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.