Abstract

Cardiac cell damage frequently occurs as a consequence of acute myocardial infarction (AMI), a critical complication of coronary atherosclerotic heart disease. There is an escalating recognition of the association between COX2 and myocardial damage induced by ischemia. The objective of this study is to investigate the inhibitory effect of the COX2 on cardiomyocyte damage in the context of AMI. To create an AMI model, mice with the genetic background of wild-type C57BL6/J (WT) and COX2-/- mice were utilized. The left anterior descending (LAD) coronary artery in their hearts was obstructed, and subsequent assessment of hemodynamic parameters and heart function was conducted. Notably, increased levels of COX2 were observed in AMI mice. Through correlational analysis between COX2 expression and cardiac function following AMI, it was revealed that COX2 knockout mice had smaller infarct sizes, better cardiac performance, and suppressed levels of reactive oxygen species (ROS) compared to WT mice. Additionally, we discovered that COX2 knockout mice exhibited significantly higher mRNA levels of smooth muscle actin, collagen I, and collagen III than normal mice with AMI. Conversely, the levels of superoxide dismutase (SOD), malondialdehyde (MDA) were higher but iron content was decreased in COX2 knockout mice compared to normal mice with AMI.In summary, our research demonstrates that the downregulation of COX2 enhances cardiac tissue recovery in the context of AMI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.