Abstract

The role of cortical activity in experience-dependent cortical plasticity was studied in the rat barrel cortex. Plasticity was induced by depriving every other whisker in a chessboard pattern, which is known to cause depression of responses to deprived whisker stimulation and potentiation of responses to spared whisker stimulation. Postsynaptic activity was blocked by muscimol released from elvax slow-release polymer located under the dura and over the barrel field. Spared whisker responses potentiated 2.5-fold in layer II/III and 2.9-fold in layer IV of the near-neighbor barrel in animals implanted with saline-elvax. In contrast, in whisker-deprived animals implanted with muscimol-elvax, responses were indistinguishable from those in undeprived animals. Similarly, in the spared barrel itself, spared whisker responses potentiated 1.3-fold in layer IV in animals implanted with saline-elvax but not at all in muscimol-treated animals. Whiskers that were deprived and then allowed to regrow showed depressed responses in saline-elvax-treated animals, in which 40% of the cells in layer II/III and 26% in layer IV were unresponsive to their principal whisker. These values fell to 17 and 3% for layers II/III and IV, respectively, in muscimol-treated animals, and the response magnitude distributions were indistinguishable from undeprived cases. Cortical activity block had no acute effect on the ventroposteriomedial nucleus responses and had a transient facilitatory effect after 4 d of muscimol treatment, which returned to baseline as the muscimol treatment wore off. We conclude from these studies that cortical activity is required for potentiation and depression of sensory responses in barrel cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call