Abstract

Macular corneal dystrophy (MCD) is a progressive, bilateral stromal dystrophic disease that arises from mutations in carbohydrate sulfotransferase 6 (CHST6). Corneal transplantation is the ultimate therapeutic solution for MCD patients. Unfortunately, postoperative recurrence remains a significant challenge. We conducted a retrospective review of a clinical cohort comprising 102 MCD patients with 124 eyes that underwent either penetrating keratoplasty (PKP) or deep anterior lamellar keratoplasty (DALK). Our results revealed that the recurrence rate was nearly three times higher in the DALK group (39.13%, 9/23 eyes) compared with the PKP group (10.89%, 11/101 eyes), suggesting that surgical replacement of the corneal endothelium for treating MCD is advisable to prevent postoperative recurrence. Our experimental data confirmed the robust mRNA and protein expression of CHST6 in human corneal endothelium and the rodent homolog CHST5 in mouse endothelium. Selective knockdown of wild-type Chst5 in mouse corneal endothelium (ACsiChst5), but not in the corneal stroma, induced experimental MCD with similar extracellular matrix synthesis impairments and corneal thinning as observed in MCD patients. Mice carrying Chst5 point mutation also recapitulated clinical phenotypes of MCD, along with corneal endothelial abnormalities. Intracameral injection of wild-type Chst5 rescued the corneal impairments in ACsiChst5 mice and retarded the disease progression in Chst5 mutant mice. Overall, our study provides new mechanistic insights and therapeutic approaches for MCD treatment by high-lighting the role of corneal endothelium in MCD development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call