Abstract

Coral disease literature has focused, for the most part, on the etiology of the more than 35 coral afflictions currently described. Much less understood are the factors that underpin the capacity of corals to regenerate lesions, including the role of colony health. This lack of knowledge with respect to the factors that influence tissue regeneration significantly limits our understanding of the impact of diseases at the colony, population, and community level. In this study, we experimentally compared tissue regeneration capacity of diseased versus healthy fragments of Gorgonia ventalina colonies at 5 m and 12 m of depth. We found that the initial health state of colonies (i.e., diseased or healthy) had a significant effect on tissue regeneration (healing). All healthy fragments exhibited full recovery regardless of depth treatment, while diseased fragments did not. Our results suggest that being diseased or healthy has a significant effect on the capacity of a sea fan colony to repair tissue, but that environmental factors associated with changes in depth, such as temperature and light, do not. We conclude that disease doesn’t just compromise vital functions such as growth and reproduction in corals but also compromises their capacity to regenerate tissue and heal lesions.

Highlights

  • Most of the present-day coral reef habitats no longer exhibit the complex community structure that was commonly observed several decades ago

  • Our results suggest that being diseased or healthy has a significant effect on the capacity of a sea fan colony to repair tissue, but that environmental factors associated with changes in depth, such as temperature and light, do not

  • Cayo Largo reef (CL) is a patch reef with a coral assemblage dominated by large colonies of Gorgonia ventalina, Pseudopterogorgia acerosa and small colonies of the Orbicella annularis, Acropora palmata and Porites astreoides (for further description of the study area, see Hernández-Delgado et al (2006))

Read more

Summary

Introduction

Most of the present-day coral reef habitats no longer exhibit the complex community structure that was commonly observed several decades ago This is evident in the Caribbean where the most important reef species such as the coral-building Caribbean Acropora palmata, A. cervicornis and the Orbicella complex (formerly Montastraea), and the predatory reef fish and herbivores such as the black sea urchins and sea fan corals, have dramatically decreased in abundance (Kim & Harvell, 2002). Coral diseases are typically diagnosed based on changes in the normal coloration of corals and by the appearance of lesions (partial tissue mortality) Under severe circumstances, such as when a pathogen is highly virulent or the coral host is immune-suppressed, disease-induced lesions can increase in size quickly, killing the colony. Given a strong immune response, diseased-induced wounds can be contained and either persist for a prolonged period (if the colony is able to contain the disease but not regenerate new tissue) or are temporary (if the colony is able to regenerate tissue over the whole lesion) (Ruiz-Diaz et al, 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.