Abstract

To probe the role of copper and protons in heme-copper oxidase (HCO), we have performed kinetic studies on an engineered heme-copper center in sperm whale myoglobin (Leu-29 --> HisPhe-43 --> His, called Cu(B)Mb) that closely mimics the heme-copper center in HCO. In the absence of metal ions, the engineered Cu(B) center in Cu(B)Mb decreases the O(2) binding affinity of the heme. However, addition of Ag(I), a redox-inactive mimic of Cu(I), increases the O(2)-binding affinity. More importantly, copper ion in the Cu(B) center is essential for O(2) reduction, as no O(2) reduction can be observed in copper-free, Zn(II), or Ag(I) derivatives of Cu(B)Mb. Instead of producing a ferryl-heme as in HCO, the Cu(B)Mb generates verdoheme because the engineered Cu(B)Mb may lack a hydrogen bonding network that delivers protons to promote the heterolytic OO cleavage necessary for the formation of ferryl-heme. Reaction of oxidized Cu(B)Mb with H(2)O(2), a species equivalent in oxidation state to 2e(-), reduced O(2) but, possessing the extra protons, resulted in ferryl-heme formation, as in HCO. The results showed that the Cu(B) center plays a critical role in O(2) binding and reduction, and that proton delivery during the O(2) reduction is important to avoid heme degradation and to promote the HCO reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.