Abstract

Scanning probe microscopy was used to investigate the tribological properties of nanoscale tips in contact with a Pt(111) single-crystal surface under ultrahigh vacuum conditions. The tips were coated with a tungsten carbide film, which contained a significant fraction of oxygen. The electrically conductive tip made it possible to alternate between contact measurements and noncontact scanning tunneling microscopy. Several types of interfaces were found depending on the chemical state of the surfaces. The first type is characterized by strong irreversible adhesion followed by material transfer between tip and sample. Low adhesion and no material transfer characterize a second type of contact, which are associated with the presence of passivating adsorbates in both (full passivation) or in one of the two contacting surfaces (half-passivation). Half-passivated contacts in which the clean side is the Pt(111) sample gave rise to periodic stick-slip friction behavior with a period equal to the atomic lattice constant of the Pt(111) surface. Local electrical conductivity measurements show a clear correlation between electronic and friction properties, with ohmic behavior on clean regions of the Pt surface and semiconductor-like behavior on areas covered with adsorbates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.