Abstract
The [PSI(+)] factor of Saccharomyces cerevisiae is a protein-based genetic element (prion) comprised of a heritable altered conformation of the cytosolic translation termination factor Sup35p. In vitro, the prion-determining region (NM) of Sup35p undergoes conformational conversion from a highly flexible soluble state to structured amyloid fibers, with a rate that is greatly accelerated by preformed NM fiber nuclei. Nucleated conformational conversion is the molecular basis of the genetic inheritance of [PSI(+)] and provides a new model for studying amyloidogenesis. Here we investigate the importance of structure and structural flexibility in soluble NM. Elevated temperatures, chemical chaperones and certain mutations in NM increase or change its structural content and inhibit or enhance nucleated conformational conversion. We propose that the structural flexibility of NM is particularly suited to allowing heritable protein-based changes in cellular behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.