Abstract

The discrepancy between alkali cation (Na+) used in accelerated assessments of potential alkali-silica reactivity (ASR) and those predominant in portland cements (larger amounts of K+ than Na+) leads to questions regarding the reliability of standardized test methods to predict concrete field performance. To better understand the role of alkali cation type in ASR, this study investigates the influence of alkali cation type on the structure and water-binding ability of ASR sols and gels of varying composition. Results obtained by small-angle neutron scattering, 1H NMR relaxometry, and rheological measurements indicate the formation of densified agglomerate structures with increasing silica-to-alkali molar mass ratios (S/A). However, Na-based sols exhibit a greater tendency to agglomerate and a higher dynamic viscosity than K-based ones. Furthermore, at high S/A, 1H NMR relaxometry shows the greater ability of K-based gels to bind water, suggesting the better dispersion of siliceous structures and the development of finer porosities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.