Abstract

The pathogenesis of atherosclerotic inflammation is a multi-step process defined by the interweaving of excess modified lipid particles, monocyte-macrophages populations, and innate immune and adaptive immunity effectors. A part of innate immunity, the complement system, is an important player in the induction and progression of atherosclerosis. The accumulation of either oxidized or enzymatically modified LDL-bound to C-reactive protein or not-prompts complement activation leading to the assembly of the terminal complement C5b-9 complex in the atherosclerotic lesion. The sublytic C5b-9 assembly leads to the activation and proliferation of smooth muscle and endothelial cells, accompanied by the release of various chemotactic, pro-adhesion, and procoagulant cytokines from these cells. Response gene to complement (RGC)-32, an essential effector of the terminal complement complex C5b-9, also affects atherogenesis, propelling vascular smooth muscle cell proliferation and migration, stimulating endothelial proliferation, and promoting vascular lesion formation. A substantial amount of experimental work has suggested a role for the complement system activation during atherosclerotic plaque formation, with the proximal classical complement pathway seemingly having a protective effect and terminal complement contributing to accelerated atherogenesis. All these data suggest that complement plays an important role in atherogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call