Abstract

New microbial communities often arise through the mixing of two or more separately assembled parent communities, a phenomenon that has been termed "community coalescence". Understanding how the interaction structures of complex parent communities determine the outcomes of coalescence events is an important challenge. While recent work has begun to elucidate the role of competition in coalescence, that of cooperation, a key interaction type commonly seen in microbial communities, is still largely unknown. Here, using a general consumer-resource model, we study the combined effects of competitive and cooperative interactions on the outcomes of coalescence events. To do so, we simulate coalescence events between pairs of communities with different degrees of competition for shared carbon resources and cooperation through cross-feeding on leaked metabolic by-products (facilitation). We also study how structural and functional properties of post-coalescence communities evolve when they are subjected to repeated coalescence events. We find that in coalescence events, the less competitive and more cooperative parent communities contribute a higher proportion of species to the new community because of their superior ability to deplete resources and resist invasions. Consequently, when a community is subjected to repeated coalescence events, it gradually evolves towards being less competitive and more cooperative, as well as more speciose, robust and efficient in resource use. Encounters between microbial communities are becoming increasingly frequent as a result of anthropogenic environmental change, and there is great interest in how the coalescence of microbial communities affects environmental and human health. Our study provides new insights into the mechanisms behind microbial community coalescence, and a framework to predict outcomes based on the interaction structures of parent communities.

Highlights

  • Microbial communities are widespread throughout our planet [1], from the human gut to the deep ocean, and play a critical role in natural processes ranging from animal development and host health [2, 3] to biogeochemical cycles [4]

  • Using a general mathematical model, we study how the structure of species interactions confers an advantage upon a microbial community when it encounters another, and how communities evolve after undergoing repeated coalescence events

  • We find that competitive interactions between species preclude their survival upon a coalescence event, while cooperative interactions are advantageous for post-coalescence survival

Read more

Summary

Introduction

Microbial communities are widespread throughout our planet [1], from the human gut to the deep ocean, and play a critical role in natural processes ranging from animal development and host health [2, 3] to biogeochemical cycles [4]. These communities are very complex, typically harboring hundreds of species [5], making them hard to characterize. Microbial community coalescence is likely to be common, the effects of both intrinsic and extrinsic factors on the outcomes of such events remains poorly understood [18]. We focus on the role of species interactions on community coalescence in this study

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.