Abstract

We connected dislocation-based atomic-scale and continuum models of plasticity in crystalline solids through numerical simulations of dislocation intersections in face-centered cubic crystals. The results contradict the traditional assumption that strain hardening is governed by the formation of sessile junctions between dislocations. The interaction between two dislocations with collinear Burgers vectors gliding in intersecting slip planes was found to be by far the strongest of all reactions. Its properties were investigated and discussed using a multiscale approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.