Abstract

The current study examines the role of cognitive and perceptual loads in inattentional deafness (the failure to perceive an auditory stimulus) and the possibility to predict this phenomenon with ocular measurements. Twenty participants performed Air Traffic Control (ATC) scenarios—in the Laby ATC-like microworld—guiding one (low cognitive load) or two (high cognitive load) aircraft while responding to visual notifications related to 7 (low perceptual load) or 21 (high perceptual load) peripheral aircraft. At the same time, participants were played standard tones which they had to ignore (probability = 0.80), or deviant tones (probability = 0.20) which they had to report. Behavioral results showed that 28.76% of alarms were not reported in the low cognitive load condition and up to 46.21% in the high cognitive load condition. On the contrary, perceptual load had no impact on the inattentional deafness rate. Finally, the mean pupil diameter of the fixations that preceded the target tones was significantly lower in the trials in which the participants did not report the tones, likely showing a momentary lapse of sustained attention, which in turn was associated to the occurrence of inattentional deafness.

Highlights

  • The Air Traffic Control (ATC) environment involves supervisory control of emergency response, and security surveillance

  • The present study suggests that inattentional deafness is promoted by cognitive load rather than by a ‘‘passive’’ perceptual load that does not generate a supplementary amount of work

  • The key factor that promoted inattentional deafness was most likely the cognitive load generated by the mental calculation of heading and by the numerous tasks to conduct

Read more

Summary

Introduction

The Air Traffic Control (ATC) environment involves supervisory control of emergency response, and security surveillance. Air traffic controllers must deal with dynamic and cognitively demanding tasks: guiding aircraft through a controlled airspace and optimizing trajectories whilst adhering to minimum distance and altitude separation minima requirement. This task must be completed in the face of temporal pressure, stress, and high-risk decision-making situations. Several research tried to identify the characteristics of the ATC environment that create cognitive demand (e.g., Manning et al, 2002; Loft et al, 2007). Task demand has a strong relationship with workload, this relationship depends on the ATC operator capacity to select priorities and manage its cognitive resources (Loft et al, 2007)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call