Abstract

Nucleotide excision repair (NER) removes a variety of DNA lesions, including ultraviolet-induced cyclobutane pyrimidine dimers. NER comprises two subpathways: transcription-coupled NER (TC-NER) and global genome NER. TC-NER efficiently removes lesions from the transcribed strands of active genes. Mutations in Cockayne syndrome groups A and B genes (CSA and CSB) result in defective TC-NER. In mammalian cells, TC-NER is presumably initiated by the arrest of RNA polymerase II at a lesion on the transcribed strand of an active gene, but the molecular mechanism underlying TC-NER remains unclear. The CSA protein has seven WD40 repeat motifs and beta-propeller architecture. A protein complex consisting of CSA, DDB1, cullin 4A, and Roc1 exhibits ubiquitin ligase activity. The role of CSA protein in TC-NER is described in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.