Abstract

In this study, microreactors were coated with catalysts synthesized by two different methods and hydrogen was produced by methanol steam reforming. The structure of the catalysts was characterized by XRD, SEM and EDS analyses in the synthesis, activation and after long-term evaluation stages. The effect of CO adsorption and the structural changes of catalysts on the product stream and conversion were investigated and compared in detail. As a result, it was observed that the catalyst prepared by sono-coprecipitation (SCC) was more active although lost its performance much faster. Considering the performance graphs, SEM/EDS analyses and XRD results, it was revealed that the main reason for the performance decrease of the SPC-reactor (spray pyrolysis coating) was the increase of CO adsorption on the surface. Also, the formation of CuO structures and CO adsorption in the SCC-reactor were responsible for the faster performance decrease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.