Abstract

ABSTRACTThis study examined the role of shading and cloud combing of moisture by scattered trees of the emergent conifer Araucaria laubenfelsii (Corbass.) in montane shrubland‐maquis at Mont Do, New Caledonia, in facilitating the succession from shrubland to rain forest. Water collection experiments showed that these trees combed significant amounts of water from low clouds on days when no rainfall was recorded and deposited this moisture on the ground beneath the tree canopy. Analysis of photosystem II function in A. laubenfelsii and five other plant species using fluorometry revealed much lower photosystem stress in plants beneath scattered A. laubenfelsii than for individuals exposed to full sunlight in the open maquis. Transition matrix analyses of vegetation change based on “the most likely recruit to succeed” indicated that the transition from maquis to forest was markedly faster when emergent trees of A. laubenfelsii acted as nuclei for forest species invasion of die maquis. On the basis of these lines of evidence, it is argued that increased moisture and shading supplied to the area directly below the crown of isolated A. laubenfelsii trees in the maquis facilitates the establishment of both conifer seedlings and other rain forest tree and shrub species. In the absence of fire, rain forest can reestablish through spread in two ways: first, by expansion from remnant patches, and second, from coalescence of small rain forest patches formed around individual trees of A. laubenfelsii.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.