Abstract

AbstractThe geomorphic evolution of the upper Indus River that traverses across the southwest (SW) edge of Tibet, and the Ladakh and Zanskar ranges, was examined along a ~350-km-long stretch of its reaches. Based on the longitudinal river profile, stream length gradient index, and river/strath terraces, this stretch of the river is divided into four segments. Valley fill river terraces are ubiquitous, and strath terraces occur in the lower reaches where the Indus River cuts through deformed Indus Molasse. Optically stimulated luminescence ages of river/strath terraces suggest that valley aggradation occurred in three pulses, at ~52, ~28, and ~16 ka, and that these broadly coincide with periods of stronger SW Indian summer monsoon. Reconstructed longitudinal river profiles using strath terraces provide an upper limit on the bedrock and provide incision rates ranging from 1.0±0.3 to 2.2±0.9 mm/a. These results suggested that rapid uplift of the western syntaxes aided by uplift along the local faults led to the formation of strath terraces and increased fluvial incision rates along this stretch of the river.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call