Abstract
It is well known that a so-called “three-dimensional filler network structure” will be constructed in the polymer/layered silicate nanocomposites when the content of layered clay reaches a threshold value, at which the silicate sheets are incapable of freely rotating, due to physical jamming and connecting of the nanodispersed layered silicate. In this article, the effect of such clay network on the mobility and relaxation of macromolecular chains in isotactic polypropylene(iPP)/organoclay nanocomposites was investigated in detail with a combination of DMTA, DSC, TGA, TEM, rheometry and melt flow index measurements. The main aim is to establish a relationship between the mesoscopic filler network structure and the macroscopic properties of the polymer nanocomposites, particularly to explore the role of the clay network on the mobility and relaxation of macromolecular chains. It was found that the nanodispersed clay tactoids and layers play less important or dominant roles on the mobility of iPP chains depending on the formation of percolating filler network. The turning point of macroscopic properties appeared at 1 wt% organoclay content. Before this point, the effect of organoclay can be negligible, and the increase of chain mobility was ascribed to the decrease of molecular weight of polymer chains, as commonly occurs during dynamic melt processing; after this point, however, a reduced mobility of chains and a retarded chain relaxation were observed and attributed to the formation of a mesoscopic filler network. The essential features of such a mesoscopic organoclay network were estimated and discussed on the basis of stress relaxation and structural reversion measurements. A schematic model was proposed to describe the different relaxation and motion behaviors of macromolecular chains in the unfilled polymer and the filled hybrids with partial and percolated organoclay networks, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.