Abstract

Abstract We use a thermodynamic statistical model to evaluate how the composition of Europa’s internal ocean may have been affected by clathrate hydrate formation. Assuming an input of the observed O2 and CO2 from the surface into a mildly acidic ocean (pH < 6), and considering the possibility of contributions by reduced (with CH4 and H2S) or oxidized (CO2-bearing) hydrothermal fluids, we calculate the fractional occupancies in clathrate and deduce the effect on the ocean’s composition. The structure of the clathrate formed, and therefore its density and composition is influenced by the relative amount of O2 compared to the other compounds present. We also include a mixture of noble gases—argon, krypton, and xenon—based on cometary abundances measured at comet 67P and find that the Ar/Kr ratio can be affected by almost two orders of magnitude. In most cases, the formed clathrate is likely to become part of the icy crust, with guest molecules possibly accessible to future in situ measurements by the Europa Clipper and JUICE missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.