Abstract
The malaria parasite Plasmodium falciparum dynamically regulates transcription of the majority of its genes during its intraerythrocytic developmental cycle. Chromatin is an important contributor to this tight regulation of gene expression. P. falciparum appears to utilize most of the mechanisms of chromatin creation and modification found in other eukaryotes, although it occasionally uses them in surprising ways. Much of the P. falciparum genome is maintained in a euchromatic state, potentially permissive for transcription and heterochromatin appears to have a specialized role limited to silencing islands of genes involved in redundant host-parasite interactions. P. falciparum histones share canonical modifications with other eukaryotes but also have unique modifications of unknown function including hyperacetylations of two alternative histones possibly involved in gene regulation. Much of our knowledge of chromatin regulation of gene expression in P. falciparum derives from the study of virulence genes that are subject to chromatin regulatory mechanisms ranging from histone modifications and nucleosomal occupancy to non-protein-coding RNAs and subnuclear architecture. These mechanisms will be discussed along with other characterized components of P. falciparum chromatin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.