Abstract
A detailed investigation of oxygen reduction reaction (ORR) catalyzed by various metal chelates has been performed by DFT study. The results indicate that the ORR activity is determined by both of the central metal ions and chelating ligands, among which the former play a key role. For the same ligand, the central metal ions Fe, Co, or Mn give higher ORR activity, while the others almost have no catalytic activity, which is due to the fact that the O2 and oxygen containing species are either excessively adsorbed (on central Cr) or difficult to be adsorbed on the active sites (for central Zn, Cu, or Ni). Furthermore, the ORR activity for Fe chelates is slightly increased with the increase of ligand field strength, while for other metal chelates there seems to be no clear trends between ligand field strength and ORR activity. The origin of the ORR activity for the studied metal chelates is mainly attributed to the appropriate energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.