Abstract

Based on the half-hourly Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) data product (0.1°), the fifth-generation European Center for Medium-Range Weather Forecasting atmospheric reanalysis dataset (ERA5), sounding data, and the Weather Research and Forecasting Model (WRF-ARW), this study explored the developmental process of a typical extreme precipitation event in Liaoning Province on 2 June 2021. This study focused on the impact of Changbai Mountain on this precipitation process and its corresponding physical mechanisms. The research findings revealed that Changbai Mountain significantly affected the precipitation event in three main aspects: blocking drag, forcing uplift, and leeside convergence. The blocking drag caused by the mountain topography led to an extension in the duration of heavy rainfall. The dynamic lifting and leeside convergence associated with the mountainous terrain also substantially increased the amount of precipitation. Furthermore, the topography hindered the movement of the Bohai Bay cold pool and enhanced the intensity of the cold pool, contributing to the sustained extreme precipitation in Liaoning Province. Lastly, the terrain sensitivity experiment demonstrated that when the height of Changbai Mountain was reduced, the convergence uplift, moisture condensation, and cold pool intensity were weakened, leading to significant changes in precipitation intensity and spatial distribution. These findings further confirm the crucial role of Changbai Mountain in the occurrence and development of local precipitation in Liaoning Province.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call