Abstract

When background sound is present, hearing impaired (HI) individuals and cochlear-implant (CI) listeners typically are worse at hearing out target sound as compared to normal-hearing (NH) listeners. This perceptual deficit occurs both when the background consists of noise that fluctuates over time (“modulated”) and for stationary background noise (“unmodulated”). In addition, the difference in thresholds between tone detection in modulated and unmodulated noise, referred to as modulation masking release (MMR), is much reduced or absent in HI and CI as compared to NH. Both peripheral and central processing mechanisms contribute to MMR. We previously showed that central MMR is reduced in human CI listeners, and that sound deprivation reduces central MMR in Mongolian gerbils. Here, we began to explore the neurobiological basis of central MMR. NH gerbils were trained to hear out target tones (1 kHz) in modulated (10-Hz rectangularly gated) versus unmodulated bandlimited background noise, and chronically implanted with recording electrodes in core auditory cortex. Neural discharge was analyzed as a function of the broadband energy ratio between target and background sound to determine how different types of background sound affect neural information transmission in awake behaving gerbil. Preliminary results will be discussed in the context of how hearing loss may affect central MMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.